Introduction
Deepbox is a comprehensive, type-safe TypeScript framework that unifies numerical computing, tabular data workflows, and machine learning into a single modular package. Zero runtime dependencies. 4,344 tests. Production-ready.
TypeScript
Zero Dependencies
4,344 Tests
MIT License
Modules
13
Tests
4,344
Dependencies
0
Node.js
≥ 24.13
Core Capabilities
- deepbox/ndarray — N-dimensional arrays, broadcasting, 90+ mathematical operations
- deepbox/dataframe — DataFrames, Series, tabular data manipulation
- deepbox/nn + deepbox/optim — Autograd, neural network modules, optimizers
- deepbox/ml + deepbox/preprocess + deepbox/metrics — Classical ML models, preprocessing, metrics
- deepbox/plot — SVG/PNG plotting and visualization
Module Overview
- deepbox/core — Types, errors, validation, dtype helpers, configuration
- deepbox/ndarray — N-D tensors with autograd, broadcasting, 90+ ops, sparse matrices
- deepbox/linalg — SVD, QR, LU, Cholesky, eigenvalue decomposition, solvers, norms
- deepbox/dataframe — DataFrame + Series with 50+ operations, CSV I/O
- deepbox/stats — Descriptive stats, correlations, hypothesis tests
- deepbox/metrics — 40+ ML metrics (classification, regression, clustering)
- deepbox/preprocess — Scalers, encoders, normalizers, cross-validation splits
- deepbox/ml — Classical ML (Linear, Ridge, Lasso, Logistic, Trees, SVM, KNN, Naive Bayes, Ensembles)
- deepbox/nn — Neural networks (Linear, Conv, RNN/LSTM/GRU, Attention, Normalization, Losses)
- deepbox/optim — Optimizers (SGD, Adam, AdamW, RMSprop, etc.) + LR schedulers
- deepbox/random — Distributions (uniform, normal, binomial, gamma, beta, etc.) + sampling
- deepbox/datasets — Built-in datasets (Iris, Digits, Breast Cancer, etc.) + synthetic generators
- deepbox/plot — SVG/PNG plotting (scatter, line, bar, hist, heatmap, contour, ML plots)
Links
- Website — https://deepbox.dev
- Documentation — https://deepbox.dev/docs
- Examples — https://deepbox.dev/examples
- Projects — https://deepbox.dev/projects
- GitHub — https://github.com/jehaad1/Deepbox
- npm — https://www.npmjs.com/package/deepbox
Design Principles
- Type Safety — Full TypeScript strict mode, no `any` types, noUncheckedIndexedAccess enabled
- Immutability — Tensor operations return new tensors, never mutate (except shuffle)
- Functional + OOP — Stateless math functions + stateful classes for models, scalers, optimizers
- Full broadcasting — Automatic shape broadcasting across all element-wise operations
- TypedArray backing — Float64Array, Float32Array, Int32Array for performance
- Tree-shakeable — Per-module imports for minimal bundle size